Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

In the title compound, $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3}$, two of the benzene rings are almost perpendicular to each other, with a dihedral angle of $88.1(1)^{\circ}$. The molecular packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi-\pi$ interactions, in addition to van der Waals forces.

## Comment

Cyclophanes are cyclic systems consisting of at least one aromatic system bridged by one or more aliphatic chains ( De Ridder et al., 2001). These derivatives constitute a novel building block for the potent human immunodeficiency virus (HIV) protease inhibitor (Ettmayer et al., 1996). They also act as potential reversal agents of muscle relaxants by chemical chelation (Cameron et al., 2002). The importance of cyclophane derivatives prompted us to undertake the structure analysis of the title compound, (I).

(I)

The structure of (I), with the atom-numbering scheme, is shown in Fig. 1. The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths of the linkages between the benzene rings are comparable with those in related cyclophane structures (Weber \& Jones, 1983; Bhaskaran et al., 2003). The $\mathrm{C}=\mathrm{C}$ bond distances are normal in comparison with the literature value of 1.321 (13) $\AA$ (Allen et al., 1987).

The exocyclic angles around atoms C 8 and C 17 show considerable asymmetry, with the $\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$ angle [124.5 (1) ${ }^{\circ}$ ] being wider than $\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 4\left[115.4\right.$ (1) ${ }^{\circ}$ ], and the $\mathrm{O} 3-\mathrm{C} 18-\mathrm{C} 19$ angle $\left[124.4(1)^{\circ}\right]$ being wider than $\mathrm{O} 3-$ C18-C23 [114.7 (1) ${ }^{\circ}$. This asymmetry may be due to the short contacts $\mathrm{H} 8 \cdots \mathrm{H} 10 B \quad(2.05 \AA)$ and $\mathrm{H} 17 A \cdots \mathrm{H} 19$ ( $2.21 \AA$ ).

The torsion angles $\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 11\left[-80.0(2)^{\circ}\right]$ and $\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 3-\mathrm{C} 18\left[170.8(1)^{\circ}\right]$ indicate that the orienta-

Received 4 May 2005 Accepted 17 May 2005 Online 21 May 2005
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## 8,12-Dioxa-1,7,10(1,2)-tribenzenacyclododeca-phane-2,5-dien-4-one

## Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.051$
$w R$ factor $=0.152$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com


Figure 1
The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the $30 \%$ probability level and $H$ atoms are shown as small spheres of arbitrary radii.


Figure 2
The molecular packing of (I), viewed down the $a$ axis. Dashed lines indicate intermolecular interactions.
tions of the $\mathrm{C}-\mathrm{O}$ bonds linking the two benzene rings are - synclinal and +antiperiplanar. The $\mathrm{C}=\mathrm{C}$ bonds are in a trans configuration. This is confirmed by the torsion angles $\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 \quad\left[-177.08(13)^{\circ}\right]$ and $\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 1$ [177.00 (14) ${ }^{\circ}$ ].

Benzene rings $A$ (atoms $\mathrm{C} 4-\mathrm{C} 9)$ and $C(\mathrm{C} 18-\mathrm{C} 23)$ are almost perpendicular to each other, with a dihedral angle of 88.1 (1) ${ }^{\circ}$. The dihedral angle between benzene rings $B$ and $C$ (C11-C16) is $79.7(1)^{\circ}$ and that between rings $A$ and $B$ is 18.4 (1) ${ }^{\circ}$.

The molecular packing is stabilized by intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions between $\mathrm{C} 8 \cdots \mathrm{O} 1$ and $\mathrm{C} 12 \cdots \mathrm{O} 1$ (Table 2 and Fig. 2). In addition to this, the packing is also stabilized by
intermolecular $\pi-\pi$ interactions between rings $B$ at $(x, y, z)$ and $(x-1, y-1, z)$, with a centroid-centroid separation of 3.656 (1) A (Fig. 2).

## Experimental

A mixture of $2,2^{\prime}$-dihydroxydibenzylideneacetone ( 1 mmol ) and potassium carbonate ( 4 mmol ) in dry dimethyl formamide ( 20 ml ) was stirred for 20 min and then ortho-xylene dibromide ( 1 mmol ) was added. Stirring was continued until the disappearance of the starting materials. After completion of the reaction, the reaction mixture was poured into water, extracted with dichloromethane, dried with anhydrous magnesium sulfate and concentrated. The mixture was then column-chromatographed with an ethyl acetate-hexane mixture (9:1) to obtain the title compound. Compound (I) was recrystallized using methanol to yield diffraction-quality crystals.

## Crystal data

$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3}$
$M_{r}=368.41$
Triclinic, $P \overline{1}$
$a=7.7602$ (11) $\AA$
$b=9.8884$ (14) $\AA$
$c=13.965(2) \AA$
$\alpha=108.074(2)^{\circ}$
$\beta=94.933(2)^{\circ}$
$\gamma=109.974(2)^{\circ}$
$V=935.1(2) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.308 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4247 reflections
$\theta=2.3-27.8^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.26 \times 0.23 \times 0.14 \mathrm{~mm}$

## Data collection

Bruker SMART APEX CCD areadetector diffractometer
$\omega$ scans
Absorption correction: none
7971 measured reflections
4160 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.152$
$S=1.05$
4160 reflections
253 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters ( $\left(\mathrm{A},{ }^{\circ}\right)$.

| $\mathrm{C} 1-\mathrm{O} 1$ | $1.225(2)$ | $\mathrm{C} 17-\mathrm{O} 3$ | $1.410(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.326(2)$ | $\mathrm{C} 18-\mathrm{O} 3$ | $1.371(2)$ |
| $\mathrm{C} 9-\mathrm{O} 2$ | $1.371(2)$ | $\mathrm{C} 24-\mathrm{C} 25$ | $1.325(2)$ |
| $\mathrm{C} 10-\mathrm{O} 2$ | $1.446(2)$ |  |  |
| $\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$ | $124.5(1)$ | $\mathrm{O} 3-\mathrm{C} 18-\mathrm{C} 19$ | $124.4(1)$ |
| $\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 4$ | $115.4(1)$ | $\mathrm{O} 3-\mathrm{C} 18-\mathrm{C} 23$ | $114.7(1)$ |
|  |  |  |  |
| $\mathrm{C} 11-\mathrm{C} 10-\mathrm{O} 2-\mathrm{C} 9$ | $-80.0(2)$ | $\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 3-\mathrm{C} 18$ | $170.8(1)$ |

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{i}}$ | 0.93 | 2.36 | $3.254(2)$ | 161 |
| $\mathrm{C} 12-\mathrm{H} 12 \cdots 1^{\mathrm{i}}$ | 0.93 | 2.54 | $3.401(2)$ | 154 |

[^0]
## organic papers

H atoms were positioned geometrically and treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 and $0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SS thanks the Council of Scientific and Industrial Research (CSIR) for providing a Senior Research Fellowship. DV acknowledges the University Grants Commission (UGC) and the Department of Bio-Technology (DBT), India, for providing computing facilities under Major Research Projects, and also thanks the Department for financial support under the UGC-SAP and DST-FIST programmes.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bhaskaran, S., Selvanayagam, S., Rajakannan, V., Velmurugan, D., Narasingarao, S., Dhanasekaran, M., Rajakumar, P. \& Kim, M.-J. (2003). Acta Cryst. E59, o1567-o1569.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Cameron, K. S., Fielding, L., Mason, R., Muir, A. W., Rees, D. C., Thorn, S. \& Zhang, M. Q. (2002). Bioorg. Med. Chem. Lett. 12, 753-755.
De Ridder, D. J. A., Goubitz, K., Fontijn, M., Capkova, P., Dova, E. \& Schenk, H. (2001). Acta Cryst. B57, 780-790.

Ettmayer, P., Billich, A., Heeht, P., Rosenwirth, B. \& Gstach, H. (1996). J. Med. Chem. 39, 3291-3299.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Weber, G. \& Jones, P. G. (1983). Acta Cryst. C39, 1053-1055.


[^0]:    Symmetry code: (i) $x-1, y-1, z$.

